A note on the global stability of generalized difference equations
نویسندگان
چکیده
منابع مشابه
A note on the global stability of generalized difference equations
In this note we prove a discrete analogue of the continuous Halanay inequality and apply it to derive sufficient conditions for the global asymptotic stability of the equilibrium of certain generalized difference equations. The relation with some numerical schemes for functional delay differential equations is discussed.
متن کاملA note on asymptotic stability conditions for delay difference equations
We obtain necessary and sufficient conditions for the asymptotic stability of the linear delay difference equation x n+1 + p N j=1 x n−k+(j−1)l = 0, where n = 0,1,2,..., p is a real number, and k, l, and N are positive integers such that k > (N − 1)l.
متن کاملStability of generalized Newton difference equations
In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations ∆n(p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional...
متن کاملA Note on the Global Behavior of a Nonlinear System of Difference Equations
This paper deals with the global asymptotic stability character of solutions of a discrete time deterministic model proposed by Wikan and Eide in Bulletin of Mathematical Biology, 66, 2004, 1685-1704. A stochastic extension of this model is proposed and discussed. Computer simulations suggest that the dynamics of the stochastic model includes a mixture of the dynamics observed in the determinis...
متن کاملGlobal Asymptotic Stability in a Class of Difference Equations
We study the difference equation xn = [( f × g1 + g2 +h)/(g1 + f × g2 +h)](xn−1, . . . ,xn−r), n = 1,2, . . . , x1−r , . . . ,x0 > 0, where f ,g1,g2 : (R+) → R+ and h : (R+) → [0,+∞) are all continuous functions, and min1≤i≤r{ui,1/ui} ≤ f (u1, . . . ,ur) ≤ max1≤i≤r{ui,1/ui}, (u1, . . . ,ur) T ∈ (R+) . We prove that this difference equation admits c = 1 as the globally asymptotically stable equi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2002
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(02)00024-1